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ABSTRACT

The tuple space coordination model is one of the most interest-
ing communication models for open distributed systems due to its
space and time decoupling and its synchronization power. Sev-
eral works have tried to improve the dependability of tuple spaces.
Some have made tuple spaces fault-tolerant while others have fo-
cused on security. However, many practical applications in the
Internet require both these dimensions. This paper describes the
design and implementation of DEPSPACE, a dependable communi-
cation infrastructure based on the tuple space coordination model.
DEPSPACE is dependable in a strong sense of the word: it is secure,
fault-tolerant and intrusion-tolerant, i.e. it behaves as expected even
if some of the machines that implement it are successfully attacked.
Moreover, it is a policy-enforced augmented tuple space, a shared
memory object that we have recently proven to be universal, i.e.,
capable of implementing any other shared memory object.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; D.4.5 [Operating Systems]: Reliability—Fault-tolerance

Keywords

Intrusion Tolerance, Tuple Space, Replication, Confidentiality

1. INTRODUCTION

The generative (or tuple space) coordination model, originally
introduced in the LINDA programming language [8], relies on a
shared memory object called a tuple space to support coordination
between distributed processes. Tuple spaces can support commu-
nication that is decoupled in time — processes do not have to be
active at the same time — and space — processes do not need to
know each others locations or addresses [5], providing some level
of synchronization at the same time. The operations supported by
a tuple space are essentially the insertion, reading and removal of
tuples, i.e., of finite sequences of values.

Previous works on fault-tolerant and secure tuple spaces (e.g.,
[2, 10, 4]) have a narrow focus in two senses: they consider only
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simple faults (crashes) or simple attacks (invalid access); and they
are about either fault tolerance or security. The present paper
goes one step further by investigating the implementation of se-
cure and fault-tolerant tuple spaces. The solution is inspired on a
current trend in dependability that applies fault tolerance concepts
and mechanisms in the domain of security, intrusion tolerance [7,
16]. The proposed tuple space is not centralized but implemented
by a set of tuple space servers. This set of tuple spaces forms a tuple
space that is dependable, meaning that it enforces the attributes of
reliability, availability, integrity and confidentiality [1], despite the
occurrence of arbitrary faults, like attacks and intrusions in some
servers.

The implementation of a dependable tuple space with the above-
mentioned attributes presents some interesting challenges. Our de-
sign is based on the classical state machine replication approach
[13, 6]. However, this approach does not guarantee the confiden-
tiality of the data stored in the servers; quite on the contrary, repli-
cating data in several servers is usually considered to reduce the
confidentiality since the potential attacker has more servers where
to attempt to read the data, instead of just one. Therefore, combin-
ing the state machine approach with confidentiality is a non-trivial
challenge that has to be addressed. A second challenge is intrin-
sically related to the tuple space model. Tuple spaces resemble
associative memories: when a process wants to read a tuple, it pro-
vides a template and the tuple space returns a tuple that “matches”
the template. This match operation involves comparing data in the
tuple with data in the template, but how can this comparison be
possible if tuples are encrypted to guarantee confidentiality? In this
paper we present DEPSPACE, a system that addresses these chal-
lenges using a particular kind of secret sharing scheme together
with cryptographic hash functions in such a way that it guarantees
that a tuple stored in the system will have its content revealed only
to authorized parties.

The design of a dependable tuple space is not a merely academic
exercise. The tuple space system presented in this paper might be
useful in several practical application domains, like the following.
(i.) Ad hoc networks are an important current trend in computer
science. It has been shown that tuple spaces can be a powerful solu-
tion to coordinate activities in those environments, and systems like
LIME [12] already explore this paradigm. (ii.) Mobile agents are
programs that migrate from node to node in the network, usually
to gather data or to perform computations close to the data source.
The interaction of these agents is usually complex due to the lack of
fixed location. Tuple spaces are an obvious solution to support this
communication since they provide time and space decoupling [5].
(iii.) Grid computing involves using resources in large numbers of
computers to perform complex computations. These computations
are decoupled both in space and time so a tuple space would be a



good solution to coordinate the tasks performed.

Algorithms based on a tuple space with the properties of
DEPSPACE are well suited for coordination of non-trusted pro-
cesses in practical dynamic systems. Instead of trying to com-
pute some distributed coordination task using a complete dynamic
model (like, for instance, the one proposed in [11]), we pursue a
more pragmatic approach where a tuple space is deployed on a
fixed and small set of servers and is used by a unknown, dynamic
and unreliable set of processes that need to coordinate themselves.
An example of scenario were this kind of system can be deployed
are peer-to-peer systems and infrastructured wireless networks.

The paper has two main contributions. The first is the presenta-
tion of the dependable and intrusion-tolerant tuple space. This de-
sign involves a non-trivial combination of security and fault toler-
ance mechanisms: state machine replication, space and tuple level
access control, and cryptography. To the best of our knowledge this
is the first work to implement Byzantine state machine replication
for tuple spaces and to integrate this technique with a confidential-
ity scheme. The second contribution is the first practical assessment
of the performance of an intrusion-tolerant scheme that provides
data confidentiality even when there are intrusions in some of the
servers. We are not aware of any other practical assessment of such
a scheme in the literature.

2. DEFINING A DEPENDABLE TUPLE
SPACE

A tuple space can be seen as a shared memory object that pro-
vides operations for storing and retrieving ordered data sets called
tuples. A tuple ¢ with all its fields defined is called an entry, and can
be inserted in the tuple space using the out(t) operation. A tuple in
the space is read using the operation rd(t), where ¢ is a femplate,
i.e. a special tuple in which some of the fields can be wild-cards or
formal fields. The operation 7d(t) returns any tuple in the space
that matches the template, i.e. any tuple with the same number of
fields and with the field values equal to all corresponding defined
values in £. A tuple can be read and removed from the space us-
ing the in(t) operation. The in and rd operations are blocking.
Non-blocking versions, inp and rdp, are also usually provided [8].

The tuple space implemented in this paper provide another oper-
ation usually not considered by most tuple space works: cas(t, t)
(conditional atomic swap) [2, 15, 3]. This operation works like an
indivisible execution of the code: if —rdp(t) then out(t). The op-
eration inserts ¢ in the space iff rdp(t) does not return any tuple,
i.e., if there is no tuple in the space that matches ¢. The cas oper-
ation is important mainly because a tuple space that supports it is
capable of solving the consensus problem [15], which is a build-
ing block for solving many important distributed synchronization
problems like atomic commit, total order multicast, leader election
and fault-tolerant mutual exclusion.

A tuple space is dependable if it satisfies the dependability at-
tributes [1]. Like in many other systems, some of these attributes
do not apply or are orthogonal to the core of the design (e.g. safety
and maintainability). The relevant attributes in this case are: reli-
ability (the operations on the tuple space have to behave according
to their specification), availability (the tuple space has to be ready
to execute the operations requested), integrity (no improper alter-
ation of the tuple space can occur), and confidentiality (the content
of tuple fields cannot be disclosed to unauthorized parties).

The difficulty of guaranteeing these attributes comes from the
occurrence of faults, either due to accidental causes (e.g., a soft-
ware bug that crashes a server) or malicious causes (e.g., an at-
tacker that modifies some tuples in a server). Since it is difficult
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Figure 1: DEPSPACE architecture

to model the behavior of a malicious adversary, intrusion tolerant
systems mostly assumes the most generic class of faults — arbitrary
or Byzantine faults — so the solution we propose and describe in the
next section is quite generic in terms of the faults it handles.

3. BUILDING A DEPENDABLE TUPLE
SPACE

This section presents the design of DEPSPACE. We begin with
a model of the underlying system and the basic assumptions of our
design, then delve into the general layered architecture and finally
into each layer.

3.1 Underlying Assumptions

The system is composed by an infinite set of clients which in-
teract with a set of n servers that implement the dependable tu-
ple space with the properties introduced in the previous section.
At most f servers and an unbounded number of clients can suffer
Byzantine failures, i.e. they can deviate arbitrarily from their speci-
fication. We assume fault independence for servers, i.e. the failures
of the servers are uncorrelated. This assumption can be substanti-
ated in practice using diversity.

All communication between clients and servers is made over re-
liable authenticated point-to-point channels. These channels can
be implemented using TCP and some cryptographic mechanism
such as MACs (Message Authentication Codes) with session keys.

The dependable tuple space does not require any explicit time
assumption, however, since it is based on the state machine repli-
cation model [13], it requires a total order multicast primitive. We
implement this primitive using the BYZANTINE PAXOS protocol
[6, 17], which only ensures liveness if the system eventually be-
comes synchronous.

3.2 Architecture Overview

The architecture of the dependable tuple space consists in a se-
ries of integrated layers that enforce each one of the dependability
attributes stated in Section 2. Figure 1 presents the DEPSPACE ar-
chitecture with all its layers.

On the top of the client-side stack is the proxy layer, which pro-
vides access to the replicated tuple space, while on the top of the
server-side stack is the tuple space implementation (a local tuple
space). The communication follows a scheme similar to remote
procedure calls. The application interacts with the system by call-
ing functions with the usual signatures of tuple spaces’ operations:
out(t), rd(t), ... These functions are called on the proxy. The layer
below handles tuple level access control. After, there is a layer that



takes care of confidentiality (Section 3.4) and then one that han-
dles replication (Section 3.3). The server-side is similar, except
that there is a new layer to check the access policy for each op-
eration requested. Access control and policy-enforcement are not
described in this paper due to space constraints. Some aspects of
these mechanisms are described in [3].

We must remark that not all of these layers must be used in every
tuple space configuration. The idea is that the layers are added or
removed according to the desired quality of service required for the
tuple space instance.

3.3 Replication

The most basic mechanism used in DEPSPACE is replication:
the tuple space is maintained in a set of n servers in such a way
that the failure of up to f of them does not impair the reliability,
availability and integrity of the system. The idea is that if some
servers fail, the tuple space is still ready (availability) and the oper-
ations work correctly (reliability and integrity) because the correct
replicas manage to overcome the misbehavior of the faulty repli-
cas. A simple approach for replication is state machine replication
[13]. This approach guarantees linearizability [9], which is a strong
form of consistency in which all replicas appear to take the same
sequence of states.

The state machine approach requires that all replicas (i.) start in
the same state and (ii.) execute all requests in the same order [13].
The first point is easy to ensure, e.g. by starting the tuple space with
no tuples. The second requires a fault-tolerant fotal order multicast
protocol, which is the crux of the problem. The state machine ap-
proach also requires that the replicas are deterministic, i.e. that the
same operation executed in the same initial state generates the same
final state in every replica. This implies that a read (or removal) in
different servers in the same state (i.e. with the same set of tuples)
must return the same response.

The protocol for replication is very simple: the client send an
operation request using total order multicast and wait for f + 1
replies with the same response from different servers. Since each
server receives the same set of messages in the same order (due to
the total order multicast), and the tuple space is deterministic, there
will be always at least n — f > 2f + 1 correct servers that execute
the operation and return the same reply.

3.4 Confidentiality

The enforcement of confidentiality in a replicated tuple space is
not trivial. Several solutions that come to mind simply do not work
or are unacceptable for the generative coordination model. One of
those solutions would be to encrypt the client-server communica-
tion and let the tuple space encrypt the tuple fields with its own
key(s). This is unacceptable because we assume f servers can fail
maliciously, so they might decrypt the tuple fields and disclose their
contents. A second solution would be to let the client that inserts
a tuple to encrypt the tuple fields either with a secret key (with a
symmetric cryptography algorithm like AES) or with its private key
(with a public-key algorithm like RSA). The problem of this solu-
tion is that it requires all clients that might read and/or remove this
tuple to know the decryption key. This contradicts the anonymity
property of the generative coordination model [8], which states that
clients should not need to know information about each other.

The solution we propose follows in some way the idea of letting
the servers handle the confidentiality. However, instead of trusting
each server to keep the confidentiality of the tuple fields, we trust a
set of servers. The solution is based on a (n, f + 1)—publicly ver-
ifiable secret sharing scheme (PVSS) [14]. Clients play the role of
the dealer of the scheme, encrypting the tuple with the public keys

of each server and obtaining a set of tuple shares. Any tuple can
be decrypted with f + 1 shares, therefore a collusion of malicious
servers cannot disclose the contents of confidential tuple fields. A
server can build a proof that the share that it is giving to the client
is correct. The PVSS scheme also provides two verification func-
tions, one for each server to verify the share it received from the
dealer and other for the client to verify if the shares collected from
servers are not corrupted.

The confidentiality scheme has also to handle the problem of
matching (possibly encrypted) tuples with templates. To solve this
problem we use a collision-resistant hash function H(v) (e.g. SHA-
1) that maps an arbitrarily length input to a fixed length output
(called a hash).

The idea is to use the hashes of the fields of a tuple as a fin-
gerprint of the tuple, and execute the matching of tuples using the
hashes of the fields of the tuple, instead of the their values. The
fingerprint of a tuple is stored in each server together with its tuple
share. One limitation of this scheme is that although hash func-
tions are unidirectional, if the range of values hat a field can take is
known and limited, then a brute-force attack can disclose its con-
tent. This limitation is a motivation for not using typed fields in a
dependable tuple spaces. Using fingerprints and the PVSS scheme,
the procedures for providing confidentiality for tuple spaces on top
of state machine replication is the following:

Tuple insertion. All shares are sent encrypted together with the
fingerprint of the tuple and its validity proof by the client using
total order multicast. The encryption of each share s; addressed
to server p; is made through symmetric cryptography, using the
session key shared between the client and the server p;. Notice that
all servers will receive all encrypted shares, however, each server
will have access only to its corresponding share, the fingerprint of
the tuple and the proof generated by the PVSS algorithm. These
three pieces of data are stored in the tuple space.

Tuple access. To access a tuple, the client sends the fingerprint of
the template and then waits for the replies from the servers contain-
ing the same tuple fingerprint that matches the template fingerprint
sent, the encrypted share of the server for this tuple and its corre-
sponding proof of validity (produced by the server). Each share is
encrypted by the servers with the session key shared between the
client and the server to avoid eavesdropping on the replies. Ad-
ditionally, the replies from the servers can be signed to make the
client capable of cleaning invalid tuples from the space (see bel-
low). The client decrypts the received shares, verifies their validity,
and combines f + 1 of them to obtain the stored tuple.

Recovery procedure. Notice that nothing prevents a malicious
client to insert a tuple with a fingerprint that does not correspond
to it. Consequently, after obtained a stored tuple, the client has to
verify if the tuple corresponds to the fingerprint. If such correspon-
dence does not exist, the client must clear the tuple from the space
(if it is not removed yet) and reissue its operation to the space. The
“tuple cleaning” is made in two steps: (I.) the client sends all
replies received to the servers to prove that the stored tuple is in-
valid; and (2.) the servers verify if the replies are produced by the
servers and, if the tuple returned does not correspond to the finger-
print, this tuple is removed from the local tuple space. Moreover,
the client that inserted the invalid tuple can be put on a black list
(and its further requests ignored). This ensures that a malicious
client cannot insert tuples after some of its invalid insertions have
been cleaned.

A key advantage of the confidentiality scheme of DEPSPACE is
that most of the cryptographic processing is done at client side.
This improves the scalability of the system, as will be show in Sec-
tion 5.



An interesting point of our scheme is that the confidentiality
layer weakens our tuple space semantics since it no longer satisfies
linearizability in all situations: a malicious client can insert invalid
shares in some servers and valid shares in others, so it is not possi-
ble to ensure that the same read/remove operation executed in the
same state of the tuple space will have the same result: the result
depends of the n— f responses collected. However, DEPSPACE sat-
isfies linearizability for all tuples that have been inserted by correct
processes.

4. IMPLEMENTATION

The DEPSPACE was implemented using the Java programming
language, and at present it is a simple but fully functional depend-
able tuple space. The Byzantine-resilient state machine replica-
tion algorithm implemented is the PAXOS AT WAR described in
[17], combined with a total ordering scheme inspired by the one
defined by [6]'. Authentication was implemented using the SHA-
1 algorithm for producing HMACs (providing an approximation
for authenticated channels on top of Java TCP Sockets). SHA-1
was also used for computing hashes. For symmetric cryptogra-
phy we employed the Triple DES algorithm while RSA with ex-
ponents of 1024 bits was used for digital signatures. All the cryp-
tographic primitives used in the prototype were provided by the
default provider of version 1.5 of JCE (Java Cryptography Exten-
sions). The only exception was the PVSS scheme, which we imple-
mented following the specification in [14], using algebraic groups
of 192 bits.

Two main implementation optimizations are specially relevant
for the system performance. The first is to try to execute rdp and
rd first without total order multicast and wait for n — f responses.
If all of them are equal, the returned value is the result of the op-
eration, otherwise the normal protocol operation must be executed.
The second optimization is for servers to send read replies without
signing them. The clients must explicitly request signed responses
for an operation if they find that the read tuple is invalid. This im-
proves the latency of the read operations since the processing cost
for asymetric cryptography is still very high. Since it is expected
that invalid tuples will be very rare, in most cases the read opera-
tions will not require digital signatures.

S. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of DEPSPACE.
The execution environment was composed by a set of five Athlon
2.4GHz PCs with 512 Mb of memory and running Linux (kernel
2.6.12). They were connected by a 100Mbps switched Ethernet net-
work. The Java runtime environment used was Sun’s JDK 1.5.0_06.

We considered tuples with 4 fields and sizes equal to 64, 256,
and 1024 bytes, running on a system with 4 servers®>. Two cases
were considered in all experiments: the complete system (with con-
fidentiality) and the system with the confidentiality scheme deacti-
vated. All our experiments considered fault-free executions. Figure
2 present the results.

The first experiments (Figures 2(a) to 2(d)) measured the delay
perceived by the client for each one of the tuple space non-blocking
operations. The client was in one of the machines and the servers in

'Our algorithm is an extension to PAXOS AT WAR to provide total
order multicast. It differs from BFT [6] since we assume reliable
channels instead of using checkpoints.

>We do not present experiments with more servers due to space
constraints. However we could say that our system suffers the same
scalability problems of other protocols with message complexity

O(n?).

the other four. We executed each operation 1000 times and obtained
the mean time discarding the 5% values with greater variance.

The results presented in the figure show that out, inp and cas
have almost the same latency when the confidentiality layer is not
used — the solid lines in Figures 2(a) to 2(d). This is the latency
imposed by the total order multicast protocol (about 6 ms). rdp,
on the other hand, is much more efficient (about 2 ms) due to the
optimization presented in Section 4, which avoids running the total
order multicast protocol.

The dotted lines in the graphs show the latency of the protocols
when the confidentiality layer is used. In these experiments all tu-
ples inserted and read have all their fields comparable. In fact, the
number of comparable fields is not relevant since the overhead for
producing a hash is negligible when compared to the overhead of
the PVSS scheme. The cas operation (Figure 2(d)) has two dotted
lines, one measuring the cases where a tuple is inserted and other
for the cases when some tuple is read. The additional latency cost
caused by the confidentiality scheme is mostly due to the client-
side processing of the operations. The global cost of the confiden-
tiality scheme is also higher for out since this is the only operation
in which the shares and their proofs have to be generated. Notice
that the processing cost of the cas operation when a tuple is read
is approximately the cost of out plus the cost of rdp. This reflects
the fact that this operation executes both tuple insertion and access
confidentiality processing.

From the Figure 2, it is clear that the size of the tuple has almost
no effect on the latency experienced by the protocols. This happens
due to two implementation features: (i.) our BYZANTINE PAXOS
implementation makes agreement over message hashes; and (ii.)
the secret shared in the PVSS scheme is not the tuple, but a sym-
metric key used to encrypt the tuple. (i.) implies that it is not the
entire message that it ordered by the PAXOS protocol, but only its
hash (MDS5 hashes always have 128 bits), consequently the mes-
sage size has little effect over the agreement protocol. With feature
(ii.) we can execute all the required PVSS cryptographic in the
same, relatively small algebraic field of 192 bits, which means that
the tuple size has no effect in these computations and the use of the
confidentiality scheme implies almost the same overhead regard-
less the size of the tuple.

The second set of experiments measured the throughput of
DEPSPACE. For these experiments we used a modified client pro-
cess that pre-processes C' requests for the operation of interest (ex-
ecuting the client-side processing) and send then one-by-one to the
servers. We measured the time 7" taken to process all these requests
at one of the replicas, from the moment it receives the first request
to the moment it sends the response for the last one. The throughput
of the system is calculated as C'/T.

Figures 2(e) to 2(h) show that the system provides a high
throughput with few servers. Even with larger tuples, the decrease
in throughput is reasonable small, e.g. increasing the tuple size 16
times (64 to 1024 bytes) causes a decrease of about 10% in the
system throughput. Therefore, the good throughput of the system
is due to the low processing required at server side and the batch
message ordering implemented in PAXOS protocol [6].

6. FINAL REMARKS

The paper presents a solution for the implementation of an
intrusion-tolerant tuple space. The proposed architecture integrates
several dependability and security mechanisms in order to enforce
the required properties. This architecture was implemented in a
system called DEPSPACE.

Another interesting aspect of this work is the integration of repli-
cation with confidentiality. To the best of our knowledge, this is the
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Figure 2: Latency and throughput of DEPSPACE operations considering different tuple sizes.

first paper to integrate state machine replication and confidentiality
of data stored in the servers. Somewhat surprisingly, this integra-
tion is not trivial and the use of secret sharing fundamentally weak-
ens the semantics of state machine replication in a Byzantine-prone
environment (linearizability is not unconditionally ensured).

All code used in DEPSPACE is available at the JITT (Java In-
trusion Tolerance Tools) project homepage: http://www.das.
ufsc.br/~neves/jitt.
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