
Experiments on COTS Diversity as an Intrusion
Detection and Tolerance Mechanism

Frédéric Majorczyk, Éric Totel, Ludovic Mé
firstname.lastname@supelec.fr

ABSTRACT
COTS (Components-Off-The-Shelf) diversity has been
proposed by many recent projects to ensure intrusion
detection and tolerance. However using COTS in a
N-version architecture presents some drawbacks, espe-
cially in intrusion detection, which have consequences
on intrusion tolerance. COTS Diversity is prone to raise
many false positives (false alerts). In this article, we
explain what a COTS Diversity architecture can detect
and propose a masking mechanism to reduce the false
positive rate. We apply this method to web servers and
provide some experimental results that confirm the ne-
cessity of this mechanism.

Keywords
Intrusion tolerance, design diversity, COTS diversity,
intrusion detection

1. INTRODUCTION
Design Diversity, and more especially N-version pro-
gramming, are techniques used to detect and tolerate
faults. They have been studied actively [1, 9] and have
been used in many industrial projects. N-version pro-
gramming consists in the execution of a single func-
tion by two or more elements, called versions, and the
comparison of the results of the different versions to
make a decision on the result. The underlying hypoth-
esis is that the different versions used are independent
from the point of view of their faults. N-version pro-
gramming has been proved to provide a high coverage
of fault detection [10], although some common-mode

failures may still exist [8].

Recently several projects have explored the idea of us-
ing COTS (Components-Off-The-Shelf) instead of spe-
cifically developed software both in the dependability
[5] and in the security field [14, 4, 3, 6, 16, 15, 2]. In-
deed, developing specific software several times is very
costly, while many Internet services are already imple-
mented by COTS. In the security field, three projects,
DIT [15], HACQIT [6], and BASE [2], focus on intru-
sion tolerance while the others [14, 4, 3] focus on intru-
sion detection. The intrusion tolerance property relies
heavily on intrusion detection. While false negatives
(missing of intrusions) have a direct impact on the in-
trusion tolerance, false positives (false alarms) can de-
crease the performance of the architecture and lead in
some cases to a self denial of service (DoS) ; the avail-
ability of the system is then not ensured. A binary com-
parison of the outputs of the COTS can lead to a very
high false positive rate. A very simple comparison al-
gorithm can lead to many false negatives and may yield
some false positives. Depending on the choice of the al-
gorithm, it is necessary to introduce some mechanisms
in the architecture to counterweight its drawbacks. We
suggest here to implement a masking mechanism to re-
duce the false positive rate.

In this paper, we study, through the example of web
servers, the false positive and false negative rates in a
COTS diversity based architecture, their potential in-
fluence on the intrusion tolerance property and the ef-
fectiveness of a masking mechanism. In Section 2, we
briefly present the DIT, HACQIT, and BASE projects
which use COTS diversity for intrusion tolerance. Then,
in Section 3, we analyse the type of differences de-
tected by COTS diversity, and show the necessity for a
masking mechanism avoiding false positives to be gen-
erated by the detection algorithm. Finally, in Section 4,
we present some results with relation to intrusion de-
tection.



2. RELATED WORK
Three recent projects have brought design diversity to
the security field in order to detect and tolerate intru-
sions. We present here these three projects: DIT, HAC-
QIT, and BASE.

2.1 The DIT Project
DIT (Dependable Intrusion Tolerance) [15, 16] is a pro-
ject that proposes a general architecture for intrusion
tolerant enterprise systems and the implementation of
an intrusion-tolerant web server as a specific instance.
The architecture includes functionally redundant COTS
servers running on diverse operating systems and plat-
forms, hardened intrusion-tolerant proxies that medi-
ate client requests and verify the behaviour of servers
and other proxies, and monitoring and alert manage-
ment components based on the EMERALD intrusion-
detection framework [11]. The architecture was next
extended to consider the dynamic content issue and the
problems related to on-line updating [13]. Intrusion de-
tection relies mostly on host monitors and network in-
trusion detection systems, but is also enforced through
the comparison of md5 hashes of the servers outputs.
Once a COTS server is considered as compromised, it
is reconfigured from a backup and can reinserted again
in the architecture.

2.2 The HACQIT Project
HACQIT (Hierarchical Adaptive Control for QoS In-
trusion Tolerance) [6] is a project that aims to provide
intrusion tolerance for web servers. The architecture
is composed by two COTS web servers: an IIS server
running on Windows and an Apache server running on
Linux. One of the servers is declared as the primary
server and the other one as the backup server. Only the
primary server is connected to clients. Another com-
puter, the Out-Of-Band (OOB) computer, is in charge
of forwarding each client request from the primary to
the backup server, and of receiving the responses of
each server. Then, it compares the responses given by
each server. The comparison is based on the status code
of the HTTP response. In addition, host monitors, ap-
plication monitors, a network intrusion detection sys-
tem like Snort [12] and an integrity tool (Tripwire [7])
are also used to detect intrusions. A mechanism of
rejuvenation is used to restart possibly compromised
servers in a safe state. In case of an intrusion, a sand-
box mechanism is used to replay requests in order to
find the sequence of malicious requests that has lead to
the intrusion. These requests can then be rejected by
the firewall.

2.3 The BASE Project
BASE [2] proposes to use an abstract model of the pro-
tected service to allows to use COTS and thus to reduce

the cost of Byzantine fault tolerance, and to improve its
ability to mask software errors. A diversified NFS ser-
vice is built as an example. The abstract model, which
describe the normal functioning of the diversified ser-
vice, is used to normalize the outputs of the diversified
implementations, and thus to mask the output differ-
ences due to specification differences or nondetermin-
ism. This approach can be used if the service to diver-
sify is well documented, in order to allow the defini-
tion of the abstract model. If the implementations used
to build the service behave very differently, the outputs
of one or several implementations will deviate signifi-
cantly from what is modeled in the abstract model.

2.4 Discussion
In these two projects, the intrusion tolerance property
relies to a great extend on the detection mechanism. If
an intrusion occurs and is not detected, the compro-
mised server must be considered as a byzantine pro-
cess. Then it can skew all the next results of the com-
parison algorithm and so the intrusion tolerance prop-
erty is not ensured anymore. It is then possible to com-
promise other servers in the architecture without be-
ing detected. There are many ways to circumvent false
negatives or their effects: using a very strict compar-
ison algorithm, adding several others IDSes, reconfig-
uring regularly the servers. The reconfiguration of a
server is obviously required when an intrusion is de-
tected but, as the detection mechanism can miss some
intrusions, it seems essential to reconfigure the servers
periodically. DIT, HACQIT and BASE implement it.
DIT and HACQIT add also other IDSes to reduce the
probability of a false negative.

Too many false positives can decrease the global per-
formance of the system and even lead to a self DoS.
In the HACQIT project, in case of an alert generated
by a request, a window of past requests is replayed in
a sandbox to establish the requests that are responsi-
ble for the alert. These requests are then rejected by
the firewall. If the requests considered as malicious
are in fact sound, the server will not respond to nor-
mal requests and so is partly unavailable. To resolve
the problem of false positives, we introduce a masking
mechanism, which allows us to use a strict comparison
algorithm and thus to be able to detect and tolerate in-
trusions without additional IDSes. The BASE project
masking mechanism avoids some false positives. Nev-
ertheless, this require anexplicit model of the service,
which may be difficult to build, as we propose to use an
implicit model associated to anexplicit model limited
to the definition of known differences.

3. INTRUSION TOLERANCE BY
COTS DIVERSITY



We present first some drawbacks of COTS Diversity
with regard to classical N-version programming. Then,
we detail a general taxonomy of the differences de-
tected by a COTS diversity based architecture.

3.1 COTS Diversity Drawbacks
Using COTS in an N-version architecture leads to some
drawbacks in the detection process. There is no proof
that the assumption of independent failure is verified by
the COTS used. Consequently, a study of the known
vulnerabilities must be performed in order to ensure
that this hypothesis is verified. This has been carried
out in several studies, such as [5] that shows that there
are very few common failures for COTS databases, or
the one of [17] that Apache and IIS servers have no
common vulnerabilities.

Moreover, the specification of the COTS neither pre-
cise what are the data to be compared, nor when it has
to be compared. Thus, a choice has to be made about
that two points. This choice will have a major impact
on the detection. On one hand, a very strict compari-
son algorithm can generate many false positives but no
false negatives. On the other hand, a loose comparison
algorithm may generate comparatively few false posi-
tives but miss several intrusions.

Finally, the specifications of the COTS used may not be
known exactly and some differences may exist though
the COTS are supposed to implement the same ser-
vice. The comparison may then lead to output differ-
ences that are not only due to software failures but also
to design or specification differences. If not handled
correctly, these differences may cause many false pos-
itives. We think that this is the main issue with COTS
diversity based architecture. Thus we detail in the next
Section what kind of differences such an architecture
will detect.

3.2 Taxonomy of Detected Differences
In N-version programming, since the different versions
have the same specification, an output difference means
that a fault has been activated in one of the version.
That is not necessarily the case when COTS are used.
COTS software have indeed not exactly the same spec-
ification. The specification of a COTS with respect to
other COTS can be viewed as a common part and a spe-
cific part that differs from other variants specific parts.

Thus, the output differences that are detected are the re-
sults either of design differences that are due to design
faults in the part of the program covered by the com-
mon specification, or design differences that are due to
differences in the specific parts of the specifications.
These later design differences are not necessarily (but
can be) design faults;

Design faults can in their turn be divided in two dif-
ferent sets: classical design faults and vulnerabilities.
Classical design faults are faults in the system that can-
not lead to a violation of the security policy of the sys-
tem while vulnerabilities are faults that can be exploited
to breach the security of the system.

Clearly, without an additional mechanism, the compar-
ison algorithm would detect all these kinds of differ-
ences. The output differences detected that are due
to classical design faults or specification differences
would actually be false positives, because they do not
imply any violations of the security policy. These false
positives must, of course, be eliminated. This elimina-
tion can be performed by masking the legitimate dif-
ferences. The masking functions are applied to modify
the request before it is processed (pre-request mask-
ing: proxy masking function) or after the request has
been performed (post-request masking: rule masking
mechanisms). In both cases, an off-line experimental
identification of the specification differences is needed.
It is not easy to evaluate theoretically the sets of dif-
ferences detected and the need of masking rules since
it depends on the COTS and the comparison algorithm
used. We decided to evaluate them experimentally on a
web server implementation, presented in the next Sec-
tion.

4. APPLICATION TO WEB
SERVERS

First, we present briefly the detection algorithm and the
output difference masking mechanism. We expose then
the results with relation to detection.

4.1 Detection Algorithm
The detection algorithm depends on the application mo-
nitored and must be developed specifically for each ap-
plication considered. Here, we compare the HTTP re-
sponses from the web servers, since HTTP is obviously
part of the common specification between the COTS.

The detection algorithm is composed of two phases.
First, a watchdog timer provides a way to detect that
a server is not able to answer to a request. All servers
that have not replied are considered to be unavailable,
and an alert is raised for each of them. Then, the com-
parison algorithm is applied on the set of answers that
have been collected.

When all server responses are collected, we first try
to identify if these answers are known design differ-
ences. In this case, we mask the differences by modi-
fying some of the headers. Then, we begin the compar-
ison process itself. As the comparison of the body can
consume a lot of time and CPU, the detection algorithm



compares first the status code, then the other headers
in a given order (Content-Length, Content-Type, Last-
Modified), and eventually the body. If no majority can
be found amongst the responses from the servers, the
algorithm exits and an alert is raised. It is useless to
compare the body and the other headers of the responses
if the status code is not of type 2XX (i.e., the request
has not been successfully processed). In this case, the
response is indeed generated dynamically by the web
server, and may differ from one server to the others. (If
these bodies were compared, it would generate a large
amount of false positives.)

4.2 Output Difference Masking
The recognition of the output differences that are not
due to vulnerabilities is driven by the definition of rules.
These rules define how such differences can be detected.
They currently take into account several parameters,
such as: a characteristic of the request (length, pattern
matching, etc.), the status code, and the Content-Type
headers. For example, a rule can define a relation be-
tween the outputs, e.g., between the status code of the
several outputs. Another example would be to link a
particular input type to its expected outputs.

It is not possible to define all differences using these
rules. For example, Windows does not differentiate
lower case letters from upper case letters, and thus we
had a lot of behaviour differences due to this system
specification difference. Thus we added a mechanism
in the proxy which processes the requests to standard-
ize them before they are sent to the servers. Thus, all
web servers provide the same answers.

The output difference masking mechanism is thus di-
vided in two parts: pre-request masking mechanisms
that standardize the inputs and post-request masking
mechanisms that mask the differences that are not due
to errors in the servers.

4.3 Experimental Results
The objective of the tests that have been conducted is
to evaluate the COTS diversity based detection mech-
anism in terms of both reliability and accuracy of the
detection process. The reliability of the approach is its
ability to detect correctly all the intrusions. The accu-
racy refers to its capacity to avoid false positives gen-
eration.

It is not easy to evaluate detection reliability for prac-
tical reasons (vulnerabilities affect specific versions of
the servers in specific configurations). However, our
previous work [14] shows that the detection mechanism
is valuable since it is able to detect several intrusions
launched against our web server implementation.

Firewall

Rules for

Masking Mechanism

Masking Mechanism

Alert

HTTP IDS

Abyss

Apache

thttpd

Linux

MacOS−X

Windows 2000

HTTP Proxy

Figure 1: Architecture for the Accuracy Test

Figure 2: Analysis of the Detected Differences

In order to evaluate the detection accuracy, we set an
architecture with three servers shown on Figure 1. We
use two sets of HTTP requests. Both contains HTTP
requests logged on the website of our campus during
a week. The first one is composed of 71,596 requests
and is used to write the masking rules. The second one
is composed of 105,228 requests and is used to evalu-
ate the detection mechanism. On the test set, 50 alerts
are raised, which represents about 7 alerts a day. Af-
ter analysis, all these alerts are false positives. With-
out masking mechanisms, 5975 alerts would have been
raised or in other words, the comparison algorithm de-
tects 5975 output differences. 99.16% of the output
differences are then masked by masking rules.

It must be noticed that, in case of an intrusion or an
attack, the localization of the server attacked is often
not possible since there is no majority in the responses
of the servers. A request can indeed activate a design
fault (especially a vulnerability) and induce an output
difference due to design differences between all COTS
used. If the localization is not possible, it is necessary



to reconfigure all servers.

5. CONCLUSION
As a conclusion, we can state that the COTS Diversity
approach provides a high coverage of detection (conse-
quence of COTS diversity and hypothesis of decorrela-
tion of vulnerabilities).

However using COTS in a intrusion tolerant architec-
ture must be done carefully: the choice of the COTS,
the comparison algorithm and the masking mechanisms
have an impact on the false positive rate. By our exper-
iments, we have shown that a high amount of output
differences are actually due to design differences and
not to exploits of vulnerabilities. We conclude that a
masking mechanism is mandatory for COTS Diversity
being effective in intrusion detection and tolerance.

6. REFERENCES
[1] A. Avizienis and J. P. J. Kelly. Fault tolerance by

design diversity: Concepts and experiments.
IEEE Computer, 17:67–80, August 1984.

[2] M. Castro, R. Rodrigues, and B. Liskov. Base:
Using abstraction to improve fault tolerance.
ACM Trans. Comput. Syst., 21(3):236–269, 2003.

[3] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and
J. Hiser. N-variant systems: A secretless
framework for security through diversity. In
Proceedings of the 15th USENIX Security
Symposium, Vancouver, Canada, August 2006.

[4] D. Gao, M. K. Reiter, and D. Song. Behavioral
distance for intrusion detection. InProceedings
of the 8th International Symposium on Recent
Advances in Intrusion Detection (RAID 2005),
pages 63–81, Seattle, WA, September 2005.

[5] I. Gashi, P. Popov, V. Stankovic, and L. Strigini.
On Designing Dependable Services with Diverse
Off-The-Shelf SQL Servers, volume 3069 of
Lecture Notes in Computer Science, pages
196–220. Springer-Verlag, 2004.

[6] J. E. Just, J. C. Reynolds, L. A. Clough,
M. Danforth, K. N. Levitt, R. Maglich, and
J. Rowe. Learning unknown attacks - a start. In
A. Wespi, G. Vigna, and L. Deri, editors,
Proceedings of the 5th International Symposium
on Recent Advances in Intrusion Detection
(RAID 2002), volume 2516 ofLecture Notes in
Computer Science, pages 158–176, Zurich,
Switzerland, October 2002. Springer.

[7] G. H. Kim and E. H. Spafford. The design and
implementation of tripwire: a file system
integrity checker. Inin Proceedings of the 2nd
ACM Conference on Computer and
communications security, pages 18–29, Fairfax,

VA, November 1994.
[8] J. C. Knight and N. G. Leveson. An experimental

evaluation of the assumption of independence in
multiversion programming.Software
Engineering, 12(1):96–109, 1986.

[9] M. R. Lyu and A. Avizienis. Assuring design
diversity in N-version software: A design
paradigm for n-version programming.
Dependable Computing and Fault-Tolerant
Systems, 6:197–218, 1992.

[10] M. R. Lyu and Y.-T. He. Improving the
N-version programming process through the
evolution of a design paradigm.Transactions on
Reliability, 42(2):179–189, June 1993.

[11] P. A. Porras and P. G. Neumann. EMERALD:
Event monitoring enabling responses to
anomalous live disturbances. InProc. of the 20th
National Information Systems Security
Conference, pages 353–365, Baltimore, MD,
October 1997.

[12] M. Roesch. Snort - lightweight intrusion
detection for networks. InProceedings of the
USENIX LISA’99 conference, pages 229–238,
Seattle, WA, November 1999.

[13] A. Saidane, Y. Deswarte, and V. Nicomette. An
intrusion tolerant architecture for dynamic
content internet servers. In P. Liu and P. Pal,
editors,Proceedings of the 2003 ACM Workshop
on Survivable and Self-Regenerative Systems
(SSRS-03), pages 110–114, Fairfax, VA, October
2003. ACM Press.

[14] E. Totel, F. Majorczyk, and L. Mé. COTS
diversity based intrusion detection and
application to web servers. InProceedings of the
8th International Symposium on Recent
Advances in Intrusion Detection (RAID 2005),
pages 43–62, Seattle, WA, september 2005.

[15] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte,
B. Dutertre, J. Levy, H. Saïdi, V. Stravidou, and
T. E. Uribe. An adaptive intrusion-tolerant server
architecture. InProceedings of the 10th
International Workshop on Security Protocols,
pages 158–178, Cambridge, United Kingdom,
April 2002.

[16] P. E. Veríssimo, N. F. Neves, and M. P. Correia.
Intrusion-tolerant architectures: Concepts and
design. InArchitecting Dependable Systems,
volume 2677 ofLecture Notes in Computer
Science. Sptringer-Verlag, April 2003.

[17] R. Wang, F. Wang, and G. T. Byrd. Design and
implementation of acceptance monitor for
building scalable intrusion tolerant system. In
Proceedings of the 10th International Conference
on Computer Communications and Networks,
pages 200–5, Phoenix, AZ, October 2001.


